Cohomology of Projective Spaces

Feng Ling

The University of Texas At Austin

FLing@utexas.edu

April 26, 2015

Derived Functors

Knowing sheaf cohomology of things is very useful in solving problems in multi-variable complex analysis, classical and abstract algebraic geometry

We can define the sheaf cohomology in generality using the concept of derived functors.

Definition

Given an left exact functor $F:\mathfrak{A}\to\mathfrak{B}$ and some injective resolution I of X in \mathfrak{A} with induced morphisms $d^i:F(I^i)\to F(I^{i+1})$, a right derived functor R^iF is defined to be $\ker d^i/\operatorname{im} d^{i-1}$.

Of course this definition is also valid for left derived functors and projective resolutions etc.

Abelian Group Sheaf Cohomology and Mayer-Vietoris

Applying the above to the left exact global section functor $\Gamma: \mathfrak{Ab}(X) \to \mathfrak{Ab}$ of a topological space X, we can get our corresponding cohomology of sheaves of abelian groups $\mathrm{H}^i(X,\mathcal{F}) = R^i\Gamma$ from injective resolution I of sheaf \mathcal{F} on X.

Computing cohomologies directly from an explicit injective resolution for every (X, \mathcal{F}) is usually difficult. But we can define the so-called Čech cohomology to help us. To motivate its definition, let's first consider the Mayer-Vietoris Sequences.

Theorem (Mayer-Vietoris Sequences)

If $X = U \cup V$, \mathcal{F} a sheaf on X, and $i: U \to X$, $j: V \to X$, $k: U \cap V \to X$ are the inclusion maps, we get a long exact sequence of cohomologies $0 \to \mathrm{H}^0(X,\mathcal{F}) \to \mathrm{H}^0(U,\mathcal{F}) \oplus \mathrm{H}^0(V,\mathcal{F}) \to \mathrm{H}^0(U \cap V,\mathcal{F}) \to \mathrm{H}^1(X,\mathcal{F}) \to \cdots$

Čech Cohomology

Likewise, we define the Čech cohomology of (X, \mathcal{F}) by using $\mathfrak{U} = \{U_i\}_{i \in I}$ an ordered open cover of X.

The cohomologies would be based on the cochain of complexes

$$C^p := \prod_{i_0 < \dots < i_p} \mathcal{F}(U_{i_0} \cap \dots \cap U_{i_p})$$

which forms a sequence $0 \to C^0 \to C^1 \to \cdots \to C^p \to \cdots$ with coboundary map $d^p: C^p \to C^{p+1}$ defined as

$$d^{p}(\ldots,\alpha_{i_{0},\ldots,i_{p}},\ldots)_{i_{0},\ldots,i_{p+1}}:=\sum_{k=0}^{p+1}(-1)^{k}\alpha_{i_{0},\ldots,\hat{i_{k}},\ldots,i_{p}}\Big|_{U_{i_{0}}\cap\cdots\cap U_{i_{p+1}}}$$

Cohomology of Projective Spaces

For projective spaces, we have $X = \mathbb{P}_A^r = \operatorname{Proj} S$ where $S = A[x_0, \dots, x_r]$ and a quasi-coherent sheaf $\mathcal{F} = \bigoplus_{n \in \mathbb{Z}} \mathcal{O}(n)$ where $\mathcal{O}(n) = \widetilde{S(n)}$.

This structure natually admits an (affine) open covering $\mathfrak{U}=\{\operatorname{Spec} S_{(x_i)}\}_{0\leq i\leq r}$ where $S_{(x_i)}=A[\frac{x_0}{x_i},\ldots,1,\ldots,\frac{x_r}{x_i}]$ is the localized degree 0 coordinate ring. Now we have the Čech complexes

$$C^p = \prod_{i_0 < \dots < i_p} \mathcal{F}(\operatorname{Spec} S_{(x_{i_0} \dots x_{i_p})})$$

$$= \prod_{i_0 < \dots < i_p} \bigoplus_{n \in \mathbb{Z}} \mathcal{O}(n)(\operatorname{Spec} S_{(x_{i_0} \dots x_{i_p})})$$

$$= \bigoplus_{n \in \mathbb{Z}} \prod_{i_0 < \dots < i_p} \widetilde{S_{(x_{i_0} \dots x_{i_p})}}(n)$$

$$\cong \prod_{i_0 < \dots < i_p} S_{x_{i_0} \dots x_{i_p}}$$

Computing the Čech cohomology

So we have the sequence

$$0 \to \prod_i S_{x_i} \xrightarrow{d^0} \prod_{i,j} S_{x_i,x_j} \xrightarrow{d^1} \cdots \xrightarrow{d^{r-2}} \prod_i S_{x_0,...,\hat{x_i},...,x_r} \xrightarrow{d^{r-1}} S_{x_0,...,x_r} \to 0$$

which induces the Čech cohomology sequence.

$$0 \to \check{\mathrm{H}}^0(X,\mathcal{F}) = \ker d^0 \to \check{\mathrm{H}}^1(X,\mathcal{F}) \to \cdots \to \check{\mathrm{H}}^i(X,\mathcal{F}) = \frac{\ker d^i}{\operatorname{im} d^{i-1}} \to$$
$$\cdots \to \check{\mathrm{H}}^{r-1}(X,\mathcal{F}) \to \check{\mathrm{H}}^r(X,\mathcal{F}) = \operatorname{coker} d^{r-1} \to 0$$

with which we can start our calculation...

Useful Facts

Theorem (1)

If X is affine and $\mathcal F$ a quasi-coherent sheaf, then $\mathrm H^p(X,\mathcal F)=0 \ \forall p>0.$

Theorem (2)

If X is noetherian separated scheme, $\mathfrak U$ an open affince cover and $\mathcal F$ a quasi-coherent sheaf, then $\check{\mathrm H}^p(\mathfrak U,\mathcal F)\to \mathrm H^p(X,\mathcal F)$ are isomorphisms for $p\geq 0$.

Theorem (3)

For $Y \hookrightarrow X$ a closed subscheme with inclusion map i, we have the exact sequence $0 \to \mathfrak{I}_Y \to \mathcal{O}_X \to i_*\mathcal{O}_Y \to 0$

Theorem (4)

If a module M have an isomorphism to itself by multiplication of f, then $M_f=0$ implies M=0.

Table of $\mathrm{H}^p(\mathbb{P}^r_A,\mathcal{O}(n))$

n	$\rho = 0$	p = 1		p = r - 1	p = r
m	$A(\ldots,f_i,\ldots)$	0		0	0
1	$A(x_0,\ldots,x_r)$	0		0	0
0	A	0		0	0
-1	0	0		0	0
:	:	:	:	:	<u>:</u>
-r	0	0		0	0
-r - 1	0	0		0	В
-r - 2	0	0		0	$B(x_0^{-1},\ldots,x_r^{-1})$
-r-1-m	0	0		0	$B(\ldots,f_i^{-1},\ldots)$

where $B = A(\frac{1}{(x_0 \cdots x_r)})$, m > 1, and f_i are the degree m monomials in x_0, \ldots, x_r .

References

Robin Hartshorne (1977)

Algebraic Geometry

And most importantly my mentor: Zhu, Yuecheng!